An Asymptotically Optimal On-Line Algorithm for Parallel Machine Scheduling

نویسندگان

  • Mabel Chou
  • Maurice Queyranne
  • David Simchi-Levi
چکیده

| Jobs arriving over time must be nonpreemptively processed on one of m parallel machines, each of which running at its own speed, so as to minimize a weighted sum of the job completion times. In this on-line environment, the processing requirement and weight of a job are not known before the job arrives. The Weighted Shortest Processing Requirement (WSPR) on-line heuristic is a simple extension of the well known WSPT heuristic, which is optimal for the single machine problem without release dates. We prove that the WSPR heuristic is asymptotically optimal for all instances with bounded job processing requirements and weights. This implies that the WSPR algorithm generates a solution whose relative error approaches zero as the number of jobs increases. Our proof does not require any probabilistic assumption on the job parameters and relies extensively on properties of optimal solutions to a single machine relaxation of the problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm

This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...

متن کامل

Two meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

Design of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System

This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003